Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Nucleocapsid protein (N) of SARS-CoV-2 plays a critical role in the viral lifecycle by regulating RNA replication and by packaging the viral genome. N and RNA phase separate to form condensates that may be important for these functions. Both functions occur at membrane surfaces, but how N toggles between these two membrane-associated functional states is unclear. Here, we reveal that phosphorylation switches how N condensates interact with membranes, in part by modulating condensate material properties. Our studies also show that phosphorylation alters N’s interaction with viral membrane proteins. We gain mechanistic insight through structural analysis and molecular simulations, which suggest phosphorylation induces a conformational change in N that softens condensate material properties. Together, our findings identify membrane association as a key feature of N condensates and provide mechanistic insights into the regulatory role of phosphorylation. Understanding this mechanism suggests potential therapeutic targets for COVID infection.more » « lessFree, publicly-accessible full text available December 1, 2026
-
The nucleolus is a multiphasic biomolecular condensate that facilitates ribosome biogenesis, a complex process involving hundreds of proteins and RNAs. The proper execution of ribosome biogenesis likely depends on the material properties of the nucleolus. However, these material properties remain poorly understood due to the challenges of in vivo measurements. Here, we use micropipette aspiration (MPA) to directly characterize the viscoelasticity and interfacial tensions of nucleoli within transcriptionally activeXenopus laevisoocytes. We examine the major nucleolar subphases, the outer granular component (GC) and the inner dense fibrillar component (DFC), which itself contains a third small phase known as the fibrillar center (FC). We show that the behavior of the GC is more liquid-like, while the behavior of the DFC/FC is consistent with that of a partially viscoelastic solid. To determine the role of ribosomal RNA in nucleolar material properties, we degrade RNA using RNase A, which causes the DFC/FC to become more fluid-like and alters interfacial tension. Together, our findings suggest that RNA underlies the partially solid-like properties of the DFC/FC and provide insights into how material properties of nucleoli in a near-native environment are related to their RNA-dependent function.more » « lessFree, publicly-accessible full text available June 3, 2026
-
Abstract Fungal plasma membrane proteins represent key therapeutic targets for antifungal agents, yet their native structure and spatial distribution remain poorly characterized. Herein, we employ an integrative approach to investigate the organization of plasma membrane protein complexes inCandida glabrata, focusing on two abundant and essential membrane proteins, the β-(1,3)-glucan synthase (GS) and the proton pump Pma1. We show that treatment with caspofungin, an echinocandin antifungal that targets GS, disrupts the native distribution of membrane protein complexes and alters membrane biophysical properties. Perturbation of the sphingolipid biosynthesis further modulates drug susceptibility, revealing that the lipid environment plays an integral role in membrane protein organization and GS-echinocandin interactions. Our work highlights the importance of characterizing membrane proteins in their native context to understand their functions and inform the development of novel antifungal therapies.more » « less
-
Free, publicly-accessible full text available May 1, 2026
-
Abstract Soil carbon (C) responses to environmental change represent a major source of uncertainty in the global C cycle. Feedbacks between soil C stocks and climate drivers could impact atmospheric CO2levels, further altering the climate. Here, we assessed the reliability of Earth system model (ESM) predictions of soil C change using the Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6). ESMs predicted global soil C gains under the high emission scenario, with soils taking up 43.9 Pg (95% CI: 9.2–78.5 Pg) C on average during the 21st century. The variation in global soil C change declined significantly from CMIP5 (with average of 48.4 Pg [95% CI: 2.0–94.9 Pg] C) to CMIP6 models (with average of 39.3 Pg [95% CI: 23.9–54.7 Pg] C). For some models, a small C increase in all biomes contributed to this convergence. For other models, offsetting responses between cold and warm biomes contributed to convergence. Although soil C predictions appeared to converge in CMIP6, the dominant processes driving soil C change at global or biome scales differed among models and in many cases between earlier and later versions of the same model. Random Forest models, for soil carbon dynamics, accounted for more than 63% variation of the global soil C change predicted by CMIP5 ESMs, but only 36% for CMIP6 models. Although most CMIP6 models apparently agree on increased soil C storage during the 21st century, this consensus obscures substantial model disagreement on the mechanisms underlying soil C response, calling into question the reliability of model predictions.more » « less
-
There is growing evidence that biological condensates, which are also referred to as membraneless organelles, and liquid-liquid phase separation play critical roles regulating many important cellular processes. Understanding the roles these condensates play in biology is predicated on understanding the material properties of these complex substances. Recently, micropipette aspiration (MPA) has been proposed as a tool to assay the viscosity and surface tension of condensates. This tool allows the measurement of both material properties in one relatively simple experiment, in contrast to many other techniques that only provide one or a ratio of parameters. While this technique has been commonly used in the literature to determine the material properties of membrane-bound objects dating back decades, the model describing the dynamics of MPA for objects with an external membrane does not correctly capture the hydrodynamics of unbounded fluids, leading to a calibration param- eter several orders of magnitude larger than predicted. In this work we derive a new model for MPA of biological condensates that does not require any calibration and is consistent with the hydrodynamics of the MPA geometry. We validate the predictions of this model by conducting MPA experiments on a standard silicone oil of known material properties and are able to predict the viscosity and surface tension using MPA. Finally, we reanalyze with this new model the MPA data presented in previous works for condensates formed from LAF-1 RGG domains.more » « less
-
Abstract. Future global changes will impact carbon (C) fluxes andpools in most terrestrial ecosystems and the feedback of terrestrial carboncycling to atmospheric CO2. Determining the vulnerability of C in ecosystems to future environmental change is thus vital for targeted land management and policy. The C capacity of an ecosystem is a function of its C inputs(e.g., net primary productivity – NPP) and how long C remains in the systembefore being respired back to the atmosphere. The proportion of C capacitycurrently stored by an ecosystem (i.e., its C saturation) provides informationabout the potential for long-term C pools to be altered by environmental andland management regimes. We estimated C capacity, C saturation, NPP, andecosystem C residence time in six US grasslands spanning temperature andprecipitation gradients by integrating high temporal resolution C pool andflux data with a process-based C model. As expected, NPP across grasslandswas strongly correlated with mean annual precipitation (MAP), yet Cresidence time was not related to MAP or mean annual temperature (MAT). We linksoil temperature, soil moisture, and inherent C turnover rates (potentiallydue to microbial function and tissue quality) as determinants of carbon residence time. Overall, we found that intermediates between extremes in moisture andtemperature had low C saturation, indicating that C in these grasslands maytrend upwards and be buffered against global change impacts. Hot and drygrasslands had greatest C saturation due to both small C inputs through NPPand high C turnover rates during soil moisture conditions favorable formicrobial activity. Additionally, leaching of soil C during monsoon eventsmay lead to C loss. C saturation was also high in tallgrass prairie due tofrequent fire that reduced inputs of aboveground plant material.Accordingly, we suggest that both hot, dry ecosystems and those frequentlydisturbed should be subject to careful land management and policy decisionsto prevent losses of C stored in these systems.more » « less
-
Abstract Unravelling biosphere feedback mechanisms is crucial for predicting the impacts of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on native soil organic carbon (SOC) decomposition, is a key feedback mechanism that could release large amounts of soil C into the atmosphere. However, the impacts of climate warming on soil priming remain elusive. Here, we show that experimental warming accelerates soil priming by 12.7% in a temperate grassland. Warming alters bacterial communities, with 38% of unique active phylotypes detected under warming. The functional genes essential for soil C decomposition are also stimulated, which could be linked to priming effects. We incorporate lab-derived information into an ecosystem model showing that model parameter uncertainty can be reduced by 32–37%. Model simulations from 2010 to 2016 indicate an increase in soil C decomposition under warming, with a 9.1% rise in priming-induced CO2emissions. If our findings can be generalized to other ecosystems over an extended period of time, soil priming could play an important role in terrestrial C cycle feedbacks and climate change.more » « less
An official website of the United States government
